数学建模:算法与编程实现在线阅读
会员

数学建模:算法与编程实现

张敬信等编著
开会员,本书免费读 >

自然科学数学11.7万字

更新时间:2022-11-23 17:02:00 最新章节:参考文献

立即阅读
加书架
下载
听书

书籍简介

本书定位于夯实数学建模基础,采用主流编程方法和简洁代码实现常用的数学建模算法,以案例为导向,围绕数学建模知识体系展开。全书分5篇,共11章。前两章是数学建模基础篇,包括数学建模介绍、数学建模的一般流程(初等模型)、如何从算法到编程实现(层次分析法与自定义函数);接着按算法板块组织内容,包括微分方程模型篇(人口模型、传染病模型)、优化模型篇(规划模型、投资优化策略、优化模型进阶)、评价模型篇(经典评价模型、模糊理论)、预测模型篇(常规预测模型、时间序列分析)。本书有配套源码资源和电子课件。本书可作为高等院校数学建模的入门教材,也可作为数学建模指导教师的参考资料,还可作为其他相关行业人员、科研人员使用数学模型解决实际问题的参考用书。
品牌:机械工业出版社
上架时间:2022-07-01 00:00:00
出版社:机械工业出版社
本书数字版权由机械工业出版社提供,并由其授权上海阅文信息技术有限公司制作发行

最新章节

张敬信等编著
主页

同类热门书

最新上架

  • 会员
    本书从几个著名数学问题出发,讲解了与我国初高中的教学实际紧密联系的数学知识,并把知识内容与数学核心素养结合起来,穿插介绍知识内容的历史发展过程,对相关数学分支在数学史上的地位进行深入思考,并辅之以数学文化、趣味知识、数学游戏、数学悖论等茂盛枝叶。
    邵勇自然7字
  • 会员
    在人类的历史长河中,数学家们总结发现过许多奇妙的数学问题,它们如夜空中的繁星,闪烁着熠熠星辉,体现了客观世界的规律之美、人类的智慧之美以及自然界的和谐之美。直到今天,这些经典的数学问题仍然受到大家的喜爱。阅读并思考这些问题,是启迪数学思维、培养兴趣爱好、拓宽知识视野的好方法。本书精选了32个专题,每个专题都以故事的形式分享了数学问题背后的历史故事及人物轶事,设置了同类的例题进行详细讲解,还精选了8
    江安海编自然9.4万字
  • 会员
    本书在分析线性代数的历年考研真题以及参考近年来各大考研名师模拟试卷中的精彩好题的基础上,将线性代数考查的重点和难点内容分成12个专题进行讲解,每个专题都配有适量的典型例题及习题,力求做到让考生“看一个专题,就吃透一个专题”,彻底学会线性代数的解题方法和技巧。
    王凯冬编著自然0字
  • 会员
    本书是《特殊函数概论》的习题解答,讲述了一些主要的特殊函数,如超几何函数、勒让德函数、合流超几何函数、贝塞耳函数、椭圆函数、椭球谐函数、马丢函数。作者不仅解答了原著中的所有习题,还对原著中存在的很多错误进行了纠正。
    吴崇试编著自然0字
  • 会员
    本书通过一系列重要的数学地标,梳理了微积分理论,既包含课堂上没讲授的数学通识内容,又包含对一些复杂知识点的细致拆解,还包含微积分在现实生活中的应用,帮助读者开阔数学视野、提高数学思维、加深对数学的理解。全书共分为四篇:第一篇为读者构建数学学习的理念和方法;第二篇解释高等数学何以称为高等、大学数学内容与中学数学内容相比是否存在一个明确的分水岭等问题,为微积分的引入做好铺垫;第三篇借助“局部-整体原则
    唐舜自然11.5万字
  • 会员
    本书以高位分段累加计算的方法,全面系统地介绍了实数加、减、乘、除、乘方、开方运算在普遍情况下的简化计算法则,实现了数的运算在通常情况下即能顺利通过心算速算来完成的目的。全书共分九章:第一章至第八章介绍了高位分段累加算术的思想方法,及其在实数加、减、乘、除、乘方、开方运算中的一般心算速算应用;第九章介绍了特殊条件下的心算速算方法,并运用高位分段累加算术解读了古印度吠陀数学乘法五式和除数是九的除法速算
    端木宁自然1.6万字
  • 会员
    本书共28章,内容涉及:尺规作图——跨越两千年的探索、柏拉图多面体、几何错视与数学艺术、迷人的镶嵌、阿波罗尼奥斯定理、完美正方形、梅涅劳斯定理和塞瓦定理、翩翩起舞的蝴蝶定理等。
    黄家礼 戴中元自然0字
  • 会员
    本书从MATLAB基础语法讲起,介绍了基于MATLAB函数的科学计算问题求解方法,实现了大量科学计算算法。全书分为三大部分。第1-2章对全书用到的MATLAB基础进行了简单介绍。第3-12章包括线性方程组求解、非线性方程求解、数值优化、数据插值、数据拟合与回归分析、数值积分、常微分方程求解、偏微分方程求解、概率统计计算及图像处理与信号处理等内容。第13-l5章以实际生活中的数学问题为例,将前文介绍
    林玲自然7字
  • 会员
    本书先后论述了平面几何的基本原理、圆、比例论、相似图形、初等数论、简单立体几何以及正多面体等内容。书中每卷在一开始会给出定义、公设和公理,然后用这些定义和公理及证明过的命题,对各种几何图形的性质进行研究,展示了一套逻辑体系严密的几何学论证方法。
    (古希腊)欧几里得自然29.4万字