神经网络与机器人科研项目申请与实践在线阅读
会员

神经网络与机器人科研项目申请与实践

张雨浓 李克讷主编
开会员,本书免费读 >

计算机网络人工智能17.3万字

更新时间:2018-12-27 11:52:33 最新章节:结束语

立即阅读
加书架
下载
听书

书籍简介

本书分为神经网络与机器人项目申请,神经网络与计算机项目申请,机械臂理论项目申请、进展与结题,机械臂实物项目申请与进展,时变问题神经网络求解项目申请、评议与进展,和基函数、多类与海量神经网络项目申请与评议共六部分,每一部分都是由相关的申请报告,进展报告,同行反馈意见和/或结题报告系统化地构成,并整理出具有启发性的总结。值得指出的是,同行评议意见一般都非常中肯,问题指出也非常到位;对同行评议意见的认真分析总结以及对应的申报书改进与完善是非常重要和有益的。
上架时间:2012-01-01 00:00:00
出版社:电子工业出版社
上海阅文信息技术有限公司已经获得合法授权,并进行制作发行

最新章节

张雨浓 李克讷主编
主页

最新上架

  • 会员
    本书主要从软件开发者的角度探讨如何构建和设计深度学习系统。作者首先描述一个典型的深度学习系统的整体,包括其主要组件以及它们之间的连接方式,然后在各个单独的章节中深入探讨这些主要组件。对于具体介绍的章节,会在开始时讨论需求,接着介绍设计原则和示例服务/代码,并评估开源解决方案。通过阅读本书,读者将能够了解深度学习系统的工作原理,以及如何开发每个组件。本书的主要读者对象是想要从事深度学习平台工作或将一
    (美)王迟 (美)司徒杰鹏计算机18.1万字
  • 会员
    本书分为3个部分:第1章和第2章是人工智能的数学基础,主要介绍了机器学习的概念、Python开发环境的搭建、机器学习bibei的数学知识,以及线性代数和概率论的相关知识;第3~12章主要介绍了回归模型、分类模型、聚类模型、半监督模型的建立和相关算法的理论,以及如何使用sklearn具体实现相关算法模型的搭建;第13章介绍了Spark机器学习,笔者认为对于机器学习,不能只限于Python中的skle
    刘润森计算机0字
  • 会员
    本书是一本关于AIGC提示工程师的实用指南,讲解了成为优秀AIGC提示工程师所需的技术特长和知识、沟通和协作能力、持续学习和自我提升方法等。本书分为3篇,共13章。第1篇为AIGC提示工程师基础,内容包括AI崛起下的新职业──AIGC提示工程师、设计高效提示的基本原则、常用的提示方法以及提示工程实践中的常见问题等;第2篇为提示进阶技巧,内容包括优化提示的除错过程、解决复杂问题的高级提示技巧、提升提
    周喜平 董丽莎编著计算机12万字
  • 会员
    我们在运用AI的时候,有时得不到自己想要的回答,于是责怪AI不够智能。我们容易忽略的是,AI的回答质量往往取决于提问的质量。《秒懂AI提问:让人工智能成为你的效率神器》系统地介绍了20种向AI提问的有效方法,用这些方法可以让AI给出高质量的回答。在介绍提问方法时,本书紧扣日常工作和生活,并通过对比让读者直观感受不同提问方法的效果,最后引出更多场景下的应用,让读者真正学以致用。《秒懂AI提问:让人工
    秋叶 刘进新 姜梅 定秋枫计算机5.4万字
  • 会员
    本书围绕“公平、隐私与保障、可靠与安全、包容、负责、透明”六个人工智能需要遵循的原则,诠释当代青少年对负责任的人工智能的认识和思考。
    王岭主编计算机7.1万字
  • 在技术进步和经济不断发展的当下,越来越多的人开始思考这些问题:当机器人能够顺畅地处理大部分工作时,是否会导致人类大量失业?在大量失业的情况下,人们该如何获得收入,是否会因此感到人生毫无意义,丧失获得快乐的能力?假设人类安全地开发出了超级智能,对它进行了良好的管理,并很好地利用了这项技术所能释放的巨大经济潜力和神奇的变革力量。在这个世界中,人工智能可以做我们能做的一切,而且可以做得更好、更快,成本更
    (英)尼克·博斯特罗姆计算机29.6万字
  • 会员
    本书结合AI原生应用落地的大量实践,系统讲解提示工程的核心原理、相关案例分析和实战应用,涵盖提示工程概述、结构化提示设计、NLP任务提示、内容创作提示、生成可控性提示、提示安全设计、形式语言风格提示、推理提示和智能体提示等内容。本书的初衷不是告诉读者如何套用各种预设的提示模板,而是帮助读者深入理解和应用提示设计技巧,以找到决定大语言模型输出的关键因子,进而将提示工程的理论知识应用到产品设计中。本书
    魏承东计算机18.2万字
  • 会员
    本书共分为10章,从ChatGPT的基本知识、技术原理和应用场景出发,探讨了如何运用ChatGPT提升职场竞争力。
    朱宁计算机11.4万字
  • 会员
    随着ChatGPT等人工智能和语言模型不断进步,了解这些技术的含义和潜在陷阱比以往任何时候都更加重要。作为享誉全球的跨技术和设计学科思想家,前田约翰利用他的丰富经验,为企业、产品设计师和决策者提供了可行的指导。通过深思熟虑和偶尔异想天开的例子,他构造了一个可以描述任何机器学习系统的关键功能的框架,并展望了可以如何使用它们来创造富有包容性和改变世界的产品。对任何想要深入了解机器如何“思考”以及未来可
    (美)前田约翰计算机9.6万字